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EXPLICIT/IMPLICIT FLUID/STRUCTURE STAGGERED
PROCEDURES WITH A STRUCTURAL PREDICTOR AND FLUID
SUBCYCLING FOR 2D INVISCID AEROELASTIC SIMULATIONS
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SUMMARY

Field time integrators with second-order-accurate numerical schemes for both the fluid and the structure are
considered for unsteady Euler aeroelastic computations. We show that if these schemes are simply coupled and
used straightforwardly with subcycling, then accuracy and stability properties may be lost. We present new
coupling staggered procedures where momentum conservation is enforced at the interface. This is done by using
a structural predictor. Continuity of structural and fluid grid displacements is not satisfied at the fluid/structure
interface. However, we show on a two-degree-of-freedom aerofoil that this new type of method has many
advantages, e.g. accuracy of conservation at the interface and extended stability. The supersonic flutter of a flat
panel is simulated in order to numerically prove that the algorithm gives accurate results with arbitrary
subcycling for the fluid in the satisfying limit of 30 time steps per period of coupled oscillation. © 1997 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Fluid/structure interaction and especially aeroelasticity are fields where numerical simulation can be
used to improve the physical understanding of coupled instabilities such as those appearing in
aircraft' or suspended span bridges.” However, the direct, fully coupled solution is still out of reach.
Actually, we have at our disposal complex, efficient and robust time integrators for both the structure
and the fluid flow. The natural way to predict the aeroelastic behaviour of a flexible structure in a
fluid flow would result from the coupling of methods for both decoupled fields.?

We consider here staggered procedures for the transient solution of coupled aeroelastic problems.
In this type of algorithm the fluid and the structure are successively but not simultaneously time-
integrated. The structure determines at least partially the fluid boundaries, whereas the fluid exerts a
pressure force along the fluid/structure interface. Since the fluid domain boundaries are time-
dependent, it becomes necessary to perform the integration of the fluid equations on a moving mesh.
Among a number of existing methods we have chosen dynamic meshes* and finite volume methods
based on the ALE formulation of the Euler equations.” Even if computational fluid dynamics (CFD)
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and structural dynamics (SD) methods are accurate and efficient, the global coupling procedure is
crucial. Recently, new partitioned procedures have been elaborated for coupled linear one-
dimensional problems,® ensuring properties often verified by each method for both decoupled fields,
e.g. stability and conservation.

In this paper these methods are adapted and extended to non-linear Euler two-dimensional
aeroelastic cases and a new type of staggered procedure with a structural predictor is introduced,
allowing us to obtain accuracy and robustness. These methods are tried on two test cases. The first
physical problem consists of an NACA 0012 aerofoil oscillating in a transonic fluid flow. The second
problem is the supersonic flutter of a flat panel with infinite aspect ratio. We use a second-order-
accurate, implicit, unconditionally stable time scheme for the structure and an explicit second-order-
accurate time scheme for the fluid. The fluid time step is limited by CFL-like stability conditions and
fluid subcycling is desirable. It allows us to perform fewer structural integrations. A successful
subcycling mixed with inter-field parallelism can significantly reduce the total solution time.’

The paper is organized as follows. In Section 2 we present the physical test cases. In Section 3 we
present the whole set of CFD and CSD methods that we use for the resolution of decoupled fields. For
the fluid we introduce the fluid grid motion algorithm, the ALE formulation of the Euler equations on
this moving grid and the Godunov finite volume method based on a MUSCL-type second-order
extension of Roe’s approximate Riemann solver. For the structure we reformulate the structural
equations into a matrix form in order to use a simple trapezoidal rule. The most original part of our
contribution is reported in Section 4. We review some enhancements made on global algorithms that
are necessary for the effective coupling of both fields. We start from the simplest staggered
procedure.® We then add time averaging of the aeroelastic forces exerted on the structure and
introduce a structural predictor. We discuss the role of the structural predictor in terms of global
energy and momentum conservations. Finally, numerical results on supersonic panel flutter are
presented and discussed in Section 5.

2. PHYSICAL PROBLEMS
2.1. Oscillating aerofoil in transonic inviscid flow

We are interested in the numerical simulation of a two-dimensional transonic inviscid flow around
an oscillating NACA 0012 aerofoil. This case is a simplification of future three-dimensional test
cases where the fluid domain surrounds the aircraft. This kind of simulation allows aircraft designers
to know at a lower cost the characteristics of their wings/aeroplanes when they are coupled with the
fluid flow.

Structural model

The aerodynamic surface of the aerofoil is assumed rigid. Only two degrees of freedom are given:
the vertical displacement / and the rotation 6 around the centre of rotation (Figure 1).
The equations for the evolution of 4 and 0 can be written® in dimensionalized form as

mh + Sy0 + c,h + kyh = F), Syh + 1,0 4 cy0 + ky0 = F,, (1)

where m is the mass of the aerofoil, /; and Sy denote the aerofoil inertial and static moments around
the elastic centre respectively, ¢, and ¢, are damping coefficients, k; and k, are stiffness coefficients
and F), and F are the lift and moment (around the elastic centre C located at xo = a,,b) respectively
exerted on the aerofoil by the fluid.

The structure is defined through non-dimensional numbers. They are listed in Table I along with
three unit setting assumptions for mass, length and time.
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Elastic center C

2 degrees of freedom ahb

Figure 1. Two-degree-of-freedom aerofoil

All parameters in (1) are given as functions of the previous parameters by

b=c/2, W), = Awy, k, = maj, ¢, = 2&,0,m, @
SQ = mbxe, I(.) = mbzyz,, k@ = 19(/05, Cyp = 2590)91@.
The lift and moment coefficients F, and F are given by
F, = J phi - j ds, Fy= J p(CM x 1), ds, 3)
r r

where p is the pressure force exerted by the fluid along the aerofoil I and M is a generic point on the
profile (Figure 2).

Fluid model

We consider a perfect gas flowing around the aerofoil. The fluid satisfies the Euler equations in the
time-dependent domain €(7) (Figure 3). Q(7) is enclosed between the fixed far-field fluid boundary
I', and the oscillating aerofoil I'(z).

The vector of conservative variables, W = (p, pu, pv, E)T, where p, u, v and E respectively denote
the density, the x- and y-velocity and the volumic total energy, is the solution of

ou pU
2
pu”+ P puv .
SN R 3, v+ P | = 0, 4)
(E+Pu (E+ P

Table I. Unit setting assumptions and dimensionless coefficients

m ¢ Wy ay X0 Yo S o 7

1-0kg 1-0m 1005~ -1 1-8 1-865 0 0 1

© 1997 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 25: 1207-1226 (1997)



1210 S. PIPERNO

Figure 2. Detail of integration of F), and F)

L

e
. Iy
L .

Figure 3. Time-dependent fluid domain I'(7)
where the pressure P is given by the perfect gas law
P=(— DE-1p@®+v%)], withy=14. 5)

The boundary conditions for W are the following:

(a) W = W, along the far-field boundary I'.,
(b) @ -7 = i - 7 along the aerofoil T'(£) (we have written iz = (1, v)" for the fluid velocity, iy and
n for the local interface speed and normal).

The definition of the problem is completed with the value of W,,. It is a function of three user-
specified non-dimensionalized parameters M, V* and u as follows:

m
Pooc = W’ Uy = bwgv*, Voo = 0,
1 1 2 (©)
Ep=(ct—- :
~ <2 - l)Méo)p"""“’

We use M, = 0-8, V* = 5.477 and p = 60, which sets a problem of interest because the transonic
M, = 0-8 is beyond the stability limit of the aerofoil and therefore flutter can appear. The density
contours when flutter is reached are depicted in Figure 4. Two supersonic zones and two shocks
below and above the aerofoil move back and forth as the aerofoil oscillates. This phenomenon
produces negative damping.
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D
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Figure 4. Non-dimensionalized density (minimum 0-7, maximum 1-3) around aerofoil at flutter

2.2. Flat panel under supersonic inviscid flow

We also test our methods on the more complex problems of a flat panel with infinite aspect ratio in
a supersonic airstream. The surface skin panel has one side exposed to an airstream and the other side
to still air. We try to simulate the supersonic flutter of this panel.”'

Structural model

The panel (Figure 5) is given a length L = 0-5 m, a uniform thickness # = 1-35 x 1073 m, a Young
modulus E = 7-728 x 10'N'm ™2, a Poisson ratio v = 0-33 and a density pg — 2710kgm—>. The
panel is clamped at both ends (x = 0 and L). The pressure of the still air under the panel is equal to
the fluid pressure at infinity, P,.

In order to have mass and stiffness matrices with large numbers on the diagonal, we use an actual
two-dimensional modelization for the structure. The finite element formulation is based on a plane

Inviscid supersonic
fluid flow

Fixed wall

Clamped flat panel Still uniform air (P=Pu)
with %te aspect ratio

Figure 5. Flat panel with infinite aspect ratio
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stress elastic model. The structure is discretized in N, horizontal and N, vertical quadrilateral
isoparametric elements. Each mesh point is given two degrees of freedom (vertical and horizontal
deflections). The mass and stiffness matrices of one quadrilateral isoparametric element are easily
computed.'' The quadrilateral isoparametric element has well-known drawbacks. It has quite poor
accuracy and is easily subject to ‘mesh locking’ (decline of accuracy with shape distortion) when the
aspect ratio of elements is very different from unity. Nevertheless, this element was chosen in order
to generate complex structural matrices (like those obtained in real computations).

Finally, the fluid pressure forces are simply transferred from the fluid to the structure when both the
fluid and structural meshes are matching. The computation of the applied pressure forces will be
detailed later for the non-matching case.

Fluid model

W is the solution of the Euler equations (4) and (5) in the fluid domain €(¢) enclosed between I,
the fixed wall and the clamped flat panel. The boundary conditions are the following:

(a) W = W, along the far-field fluid boundary I' ; the state W, is supersonic with no vertical
velocity (v =0) and is completely defined by the pressure P, = 25714 Pa, the density
Poo = 0-4kg m > and the Mach number M,

(b) v =0 along the fixed wall (slip condition)

(c) 4 -1 =ur -n (slip condition on the moving boundary I'(¢)).

Instability

In this subsection we give a quick sketch of a simplified analytical study on the linear instability of
the panel.” This analysis is based upon shallow shell theory and a first-order approximation of
aerodynamic theory where the influence of three-dimensional aerodynamic effects is neglected (this
approximation is valid for M, > 1-6).

When the structural vertical deflection X is very small, the fluid pressure forces on the panel can be
approximated as a function of X and its derivatives. The global aeroelastic equation then reads

X ERP X Pocltle X potog(M% —2)0X

T Wt T M- Dar Mz —1)y? o ™

psh

where u,, denotes the gas velocity at infinity. The boundary conditions for the deflection X (clamped
panel) are

XO0) =X =5 0 =5 ) =0. ®

Frequencies for coupled modes are computed and the limit Mach number where an unstable
coupled mode appears can be estimated with a resolution method of Houbolt.'? For the present data
an instability appears at M, = 227 with a pulsation & = 462rads~'. The real part of the coupled
flutter mode is clearly asymmetric (Figure 6) because of the action of the supersonic airstream. The
point with the maximal amplitude is located near x = 0-35 m.

This limit Mach number is used to test our numerical methods, since the exact solution is a perfect
(neither damped nor amplified) oscillation. A glance at the results will tell us what amount of
numerical damping our algorithms produce and whether or not they are stable.

INT. J. NUMER. METH. FLUIDS, VOL. 25: 1207-1226 (1997) © 1997 John Wiley & Sons, Ltd.
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Figure 6. Vertical deflection for flutter mode (real part)

3. NUMERICAL METHODS

In this section we present the numerical methods used for each field, which are classical methods of
CFD (even though the fluid domain is time-dependent) or CSD. Our most important contribution in
this paper deals with the effective fluid/structure coupling and is presented in Section 4.

3.1. Numerical methods used for the fluid

We first present the spatial discretization and the grid moving/updating schemes we use. Once we
have introduced the arbitrary Lagrangian—Eulerian (ALE) formulation of the Euler equations, we
finish with the finite volume method used for the fluid on a dynamic mesh.

Spatial discretization: design and updating scheme

We assume that we have an initial unstructured triangulation Q"(0) of the fluid domain ©(0). The
boundary points of this triangulation are located either on the far-field boundary I' , (and they form
the set I ﬁo) or on the aerofoil I'(0) (set I"(0)). We describe here the updating scheme for the fluid
mesh from time ¢, to time #,. We assume that we know the location of the fluid/structure interface at
time f,. For the aerofoil problem we only need the values 6(z,) and A(t,) of the two structural degrees
of freedom at time f,. For the panel problem we have to know the whole structural state at time 7,.
The rest of Qh(tz) is obtained via a method proposed by Batina* and generalized by Lesoinne and
Farhat.'?> This method enables us to move the mesh with no addition or deletion of any vertex.
Briefly, each edge ij (between vertices i and ;) is given a stiffness (e.g. the inverse of its length). We
seek the displacements 9, of all vertices from Q" (1) to Q(t,). The vertices get back to equilibrium
when

Y k6, —0) =0 forieQ"/(I"UTy), 9)
JEN()

where N(i) is the set of vertices neighbouring i. The equation of displacements is solved with a
Jacobi-type iterative method in which the displacements (inside the domain) are initialized with a
linear prediction.

© 1997 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 25: 1207-1226 (1997)
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ALE formulation

We present here the arbitrary Lagrangian—Eulerian formulation of the Euler equations (4). This
allows us to consider the classical Euler equations in a moving domain. i4 ¢ and X respectively denote
some mixed geometric co-ordinates and the laboratory co-ordinates. ¢ plays the role of a moving
frame of reference linked to the mesh Q'(¢), i.e. the &-co-ordinates of the vertices do not depend on
time. Let us define the Jacobian J and the mesh speed w by

ox Lo
J=det[ 2] ), W=l (10)
aE s ot
The ALE formulation of the Euler equations reads
a(JW) .2
o : +J le}F =0, (11)
where
pu pv
= | puu+p = ouv - -
F.= i , Fy, = pvi+p | u=u—w, V=0v—w,. (12)
el + pu ev+ pv

Integrating (11) on a fixed cell CE’ (corresponding to the cell C; moving in the laboratory co-
ordinates) yields

d (J Wdi) v J divy F d¥ = 0. (13)
dt Cy C;

X

Numerical schemes

We use a finite volume formulation of the previous ALE Euler integral equation (13). For each
vertex i, a median dual cell C; is defined (Figure 7), dC; denotes the boundary of this cell and N(i) is
the set of vertices j neighbouring i. 9C;; stands for 9C; U 9C;.

|

Figure 7. Cell and boundary for vertex i
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The spatial scheme takes the form

AW, + X 18CI1D(W;, W;, 777) = 0, (14)
JEN(i)

where W; is the averaged value of the field Win cell C;, 4, is the area of cell C;, BF is a time average

of 9C;; (of length ||8C || and normal n oriented from C; to C;) and ® is a numerical flux such that
— = " +AL z
MITCIB, Wi~ [ (| Foy o) o (15)

We use a Godunov method based on Roe’s approximate Riemann solver for the hyperbolic flux F.
The numerical flux ® in (15) is taken as

F(W)+F(W)_) ~ ~ W-—W,-

T :> ~ —_—> —> J
where the matrix .o/ (W, 11;71]) is the Jacobian of the flux F 11,] taken at Roe’s average W;; of the

two states W, and W The absolute value signs in (16) are common to all Roe-type methods (the
matrix is dlagonahzed and absolute values of elgenvalues are computed).

N’Konga and Guillard"® have dlscussed a choice for w, and 11_; This choice was advocated

ij
because it gives the Jacobian of (W, nU) a proprlety similar to Roe’s linearization in the standard
case.'® It was also advocated by Farhat et al.'® for conservation reasons. Indeed, if the location of the
vertices are updated with the scheme

SPH =8P+ A2, (17)

where At is the current time step, then a uniform field W = W, is conserved throughout the
computation (i.e. the volume is also conserved) if the cell areas are updated with the same time
scheme as in (14), i.e. according to

—~

(A + > 19CI(=wy - 15) = 0. (18)
JEN()

The extension to a second-order accuracy follows the general idea of the MUSCL scheme initially
developed by Van Leer'’ and adapted to unstructured finite elements by Fezoui.'® We have chosen
half-centred half-upwind gradients for the second-order extension. We refer the reader to References
11 and 16 for more details, especially on the treatment of boundary conditions.

Equation (14) can be seen as an ODE of the form 0,(AW) + *¥(W) = 0. Time integration of this
ODE is done using the following three-step explicit Runge—Kutta scheme with low storage:

wO =w,
At 1 At
(k) 4 (0) (k—1) _
W, _W ; An+1 g k‘P(W ), k=1,2,3, (19)
Wt — W,

This time scheme is second-order-accurate. It is stable under a CFL-like condition on the fluid time
step Ar.'? Cell areas are always evaluated at the end of the current time step, which prevents actual
second-order accuracy for the temporal scheme. However, tests were made which showed that this is
not a source of significant inaccuracy.

© 1997 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 25: 1207-1226 (1997)
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3.2. Numerical methods used for the structure
Structural equations

For both model problems the linear structural equations are rewritten in matrix form as
MX + DX + KX =F. (20)

X still denotes the field of structural displacements. M, D and K respectively are the mass, damping
and stiffness matrices. All three are symmetric and positive, M and K being positive definite. The
trapezoidal rule can be used for (20) in both cases. In the following, A", V" and X" respectively
denote approximations of X(¢"), X(¢") and X(¢"). Using the time step Ar = r"+! — ", the trapezoidal
rule reads

Xn+l — Xn +AtV”+1/2
Vn+1 — Vn +AtAn+1/2, (21)
A" such that MA™™' + Dyt 4 kx ! = prl

where Z"1/2 stands for (Z" + Z"*')/2 for any field Z. F{*! is an estimate for the applied force at time
#"*+1. This scheme is second-order-accurate and unconditionally stable. When D = 0, no numerical
dissipation is added.

Pressure forces

We discuss here some choices concerning the input force F{”l. If the pressure force on the
structure at time #**! is not known, we have to use an estimate. If we use a subcycled coupling
scheme, then we have to choose the pressure force we use (since we have computed these forces at
several different times). Actually, the structural integration depends a lot on the general coupling
procedure. The energy exchange at the fluid/structure interface depends on the time interpolation
used.

Geometrically, some choices have to be made. In the case of the aerofoil the generalized forces
detailed in (3) are integrated straightforwardly along I'". For the panel flutter simulation the fluid and
structural meshes are not matching at the fluid/structure interface. Linear matching interpolations are
used (Figure 8). More precisely, the pressure Pr_ g applied to a structural point is the barycentric
weighted average of the neighbouring fluid pressures P; and Pg. Reciprocally, the displacement
Xr_,g of a fluid grid point at the interface is the barycentric weighted average of the neighbouring
structural displacements X; and Xjy.

4. CONSTRUCTION OF EFFICIENT STAGGERED PROCEDURES

In this section we review the fine points of the actual coupling of the fluid and the structure. Some of
the methods presented here have been derived from one-dimensional studies.”® We consider in this
section the aerofoil simulation. Since each computation is inexpensive, we can make a lot of
numerical tests. In Section 5 we shall verify the accuracy and efficiency of the constructed staggered
procedures on the considerably more complex simulation of panel flutter.

Throughout this section we assume that fluid subcycling is desirable (which is the case indeed). We
would like to perform fewer structural time integrations (with a larger time step) than fluid time
integrations. This can lead to important savings in computational costs.® Therefore we keep in mind
that we would like the maximum subcycling factor ng,g (number of fluid subcycles per structural time
integration) with the same accuracy.

INT. J. NUMER. METH. FLUIDS, VOL. 25: 1207-1226 (1997) © 1997 John Wiley & Sons, Ltd.
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Figure 8. Interpolations at interface for non-matching grids

We use a fluid unstructured grid of 2280 vertices (120 vertices on the aerofoil) and 4320 triangles.
For all simulations the initial fluid flow is the steady flow around the structure with 7 = 0 = 0. At
time ¢ = 0 the structure is given a vertical speed perturbation (h = 3-42ms™ ', 0 = 0).

4.1. Choice for the pressure forces

Let us begin with the simplest staggered procedure. One time integration of Afg is performed as
follows.

Compute the generalized forces F in (1).

Perform a structural time integration (21) of Atg with FI"+1 =F.

Update the mesh displacements on I" and construct a new fluid grid as in (9).
Compute the grid velocities as in (17).

Perform as many fluid time steps (19) as necessary to complete the time step Atg.

Nk L=

We notice that continuity of the structure and fluid grid displacements is enforced at the end of a
global time step. However, continuity of both displacements and velocities can only be achieved with
an offset staggered procedure.?'

Several choices are possible for the pressure forces of substep 1, depending on what kind of time
interpolation is used. The results for the aerofoil rotation 6 (in degrees) computed with two different
choices are compared with a reference result obtained with no subcycling and a very small time step
(Figure 9). The previous curve corresponds to F = F". The averaged curve corresponds to

n

_ n=1/2 _ 1 & n—1
F=F="2= S At F! 22)
Atgim

where the summation is extended over all subcycles, Fi~! being the pressure forces computed before
the kth subcycle in the previous time step. For this test we have taken Arg = 8-76 x 1074 s. The
subcycling factor is ng,g = 60. We see that the choice for /" has an obvious influence on the numerical
results. We guess why the second method is worse that the first one: the computed value for F is
roughly close to F("~'/?) (and in the case of the previous curve it would be F(¢")). Anyway, both

© 1997 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 25: 1207-1226 (1997)
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Figure 9. Aerofoil rotation with different pressure forces

schemes give results different from the reference curve. These preliminary results show that
importance of the choice for the pressure input forces.

4.2. Introduction of a structural predictor

Staggered procedures using a structural predictor were recently introduced and advocated.'' In
short, they allow one to reduce considerably the energy conservation errors. The general idea is
simple: assume one can construct with good accuracy a prediction of the state of the structure at the
end of the next time step, then one should perform the three last steps of Section 4.1 and finish with
the actual time integration of the structure. The new staggered procedure reads as follows.

Compute a prediction X”*! for the structural displacement after the current time step.
Update the mesh displacements on I' and construct a new fluid grid as in (9).
Compute the grid velocities as in (17).

Perform as many fluid time steps (19) as necessary to complete the time step Afg.
Compute some input forces F in (1).

Perform a structural time integration (21) of Azg with F; I”H =F.

SNk LD =

At the end of a time step, continuity of the structural and fluid grid displacements at the
fluid/structure interface is a priori not satisfied unless the structural predictor is perfect. As a first test
we try the first-order predictor for the structural displacement.

X+ = X"+ ArgV". 23)

For the input forces F of substep 5 we simply use F"*!. Because the fluid was time-integrated first,
this information is available. This is one of the most remarkable differences from a staggered
procedure without a structural predictor. As a matter of fact, these simple tricks are sufficient to
obtain a result closer to the reference curve than the most accurate staggered procedure with no
predictor, reported earlier as ‘previous’ (Figure 10). These results were obtained with
Atg =876 x 10~*s and g5 = 60.

INT. J. NUMER. METH. FLUIDS, VOL. 25: 1207-1226 (1997) © 1997 John Wiley & Sons, Ltd.



FLUID/STRUCTURE STAGGERED PROCEDURES 1219

2
theta(deg) I
e A A A A B I N Bt s
1
05 \
0 \\
-0.5 \
-1 '\
1.5 e . I\ /
2

time t(s)

Figure 10. Aerofoil rotation with/without a structural predictor

4.3. Role of the structural predictor

We can wonder what is the influence of the structural predictor on the accuracy and stability of the
staggered procedure. We have compared the first-order predictor (23) with three more accurate
predictors. The first two are linear predictors and read

Xt = X+ Atg(1-5V" — 0.5V, 24)
Sl n n Até n
XrH = X" 4 AtgV" 4 5 A", (25)

The third one is the result of a numerical integration of the structure with F”, i.e.
X+ = X" 4 %(V" + Vi,
Pl % (A" 4 A, (26)
A" such that MA™H! + DV 4 KX = F™.

We have made tests with up to 76 structural time steps per period of coupled oscillation (denoted
by T¢ in the sequel). The time step Atg is rather small but not negligible compared with T-. The
results are almost identical. For larger structural time steps the first predictor (24) is the most
accurate, stable and inexpensive. However, in some cases where an implicit fluid solver is used (with
a large fluid time step), some iterations based on the same principle as (26) can be very efficient.

4.4. Energy conservation

We discuss here the origin of the enhanced efficiency (accuracy and stability) of the staggered
procedure with a structural predictor. Our discussion is based on energetic considerations and some
elements of demonstration are given ‘with the hands’. As a matter of fact, we only consider energetic

© 1997 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 25: 1207-1226 (1997)
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exchanges through an element of the fluid/structure interface (anyway, we do not discuss here some
fine points of the spatial scheme but of the global procedure).

If the fluid is subcycled, then (the reader can check that) the energy received by the fluid through a
structural boundary element is roughly given by

NE/s

AEF = - Z AtFkF;zWZ,
k=1

where wY is the boundary velocity during the kth subcycle. We assume that w is constant through all
subcycles (w = w"*1/2). Defining F"*!/? as in (22) yields

AEF — —F’1+1/2Alswn+l/2. (27)

On the other hand, the energy received by the structure through a time integration with the
trapezoidal rule is

1
AE = F' + Ft AtV 172,

where FI"Jrl is the input of the trapezoidal rule for the step " — #"*!. Finally, the total amount of
energy numerically created, AE = AEy + AEg, is

n n+1
AE — Ats|:<FI +2F1 >Vn+l/2 B 1}11+1/2wn+l/2:|. (28)
At the same time, the amount of momentum numerically created by the staggered procedure is
Fp 4 Frtt
AQ = Arg (% - F"+‘/2>. (29)

Let us now consider a typical staggered procedure with no structural predictor. By construction, the
trapezoidal rule yields w"*!/2 = V"*1/2_ The input force F'*! is necessarily outdated, since Fr172 gs
unavailable. Besides, it is very difficult to find a good predictor for F"+!/2 (because the fluid time
scale is smaller) in order to have a limited amount of momentum or energy created. Therefore a
staggered procedure with no structural predictor will not have a large stability and accuracy domain.

In contrast, for a staggered procedure with a structural predictor, F"+'/2 js available when the
structure is time-integrated from " to "*!. Let us define the matching error &" by &" = X — X",

Taking FI'! = 2F"+1/2 — F7' yields
AQ =0, AE = F' 12l gy, (30)

The reader can notice that the use of a structural predictor induces an exact exchange of forces
between the fluid and the structure at the interface. Moreover, (30) shows that the error on the energy
exchange is controlled by the accuracy of the structural predictor. The staggered procedure is also
flexible, since no definite type of predictor is requested.

We now test several choices for the input forces F'™' of the trapezoidal rule for staggered
procedures with a structural predictor. The rotations of the aerofoil computed with different inputs
(Atg = 876 x 107*s~ T./80 and ng /s = 60) are compared with the reference result (Figure 11).

We tested the following inputs:

averaged forces Fi'™' = F"t1/2,
last forces Fy+! = (31)

corrected forces FI't! = 2F"1/2 — Fr
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Figure 11. Energy conservation for different input forces

The results with averaged forces is not really good. The amplification of the flutter has changed. This
was clearly foreseen by (28). Last forces give a much better result. However, tests with larger time
steps showed that the resulting staggered procedure is quickly unstable (Atg = T/70 seems to be a
limit). Finally, corrected forces—which imply exact momentum conservation—give a slightly better
result than the preceding one. Moreover, the resulting staggered procedure happens to be stable up to
Aty = T¢/30.

4.5. Grid motion and subcycling

In the preceding sections we have only considered grid motions with a constant speed during each
global time step. Actual mesh motions are only computed before each gl